MACULAR EDEMA IS A COMMON CAUSE OF VISUAL impairment in patients with diabetic retinopathy, which occurs in approximately 29% of diabetic patients with at least 20 years duration of the disease. Focal or grid laser photocoagulation has been standard treatment for clinically significant macular edema, reducing the risk of moderate visual loss by 50%. However, the prognosis after laser treatment for diffuse edema was worse than for focal edema.

The pathogenesis of diffuse edema is more complex than that of other forms of macular edema and includes poorly demarcated leakage from abnormal retinal capillaries and microaneurysms. Besides the influence of the duration of diabetes mellitus, insulin dependence, HbA1c, proteinuria, hypertension, and panretinal laser photocoagulation, the role of the posterior hyaloid has become increasingly recognized. Nasrallah and associates observed in 1988 a lower incidence of posterior vitreous detachment in eyes with diabetic macular edema compared with eyes without edema. Lewis and colleagues described the first encouraging results after vitrectomy in diabetic eyes with macular traction in 1992. In the following years, retrospective studies of single case series have shown the advantage of vitrectomy and removal of the posterior hyaloid on morphologic and functional results. In addition, spontaneous resolution of edema in 55% of eyes with posterior vitreous separation, compared with 25% of eyes with or without incomplete posterior vitreous detachment, was observed by Hikichi and associates in 1997.

To evaluate prospectively a potential benefit of vitrectomy in eyes with persistent diffuse diabetic macular edema compared with a control group not undergoing operation, the following study was carried out.

METHODS

PURPOSE: To evaluate the potential benefit of vitrectomy in eyes with persistent diffuse macular edema.

DESIGN: Prospective randomized comparative clinical trial.

METHODS: Eyes with diffuse diabetic macular edema for 6 to 18 months, an attached posterior hyaloid, and grid laser photocoagulation performed at least 4 months before were included. Patients were randomized either to a vitrectomy group or to a control group.

MEASURES: Evaluations of Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity, reading vision, and retinal thickness were carried out at baseline and 1, 3, and 6 months after enrollment.

RESULTS: Fifty-six eyes (100%) were enrolled in this study. Twenty-five eyes (44.6%) were randomized into Gr I (vitrectomy group) and 31 eyes (55.4%) into Gr II (controls). Both groups were comparable in mean age (62.7 years and 63.9 years) and distribution of gender (one third male, two thirds female).

ETDRS visual acuity showed a statistical significance in favor of Gr I at all time points (P = .035 to .005 Fisher’s exact test). With Jaeger charts a significance for Gr I was found only at the 6-month examination (P = .01). With optical coherence tomography, the different behavior of retinal thickness changes in both groups during follow-up was statistically significant; P values were <.0001 for month 1, 3, and 6, preferring Gr I.

CONCLUSIONS: We provide evidence that vitrectomy with internal limiting membrane peeling is superior to observation alone in eyes with persistent diffuse diabetic macular edema for 6 to 18 months. Longer follow-up periods and larger series might be needed to confirm these results and gain additional information.
A minimum of 6 and a maximum of 18 months; grid laser photocoagulation performed at least 4 months earlier; a documented attached posterior hyaloid either with B-scan ultrasound examination or the presence of a preretinal membrane shown with optical coherence tomography (OCT); and no or only mild cataract, less than NO3NC3C3P3 according to the Lens Opacities Classification System III (LOCS III) charts.

Excluded were patients who had had more than three laser treatments in the macula or other pretreatments before enrollment, long-term treatment with diuretics, or HbA1c of more than 8.0.24,25 Eyes with ischemic maculopathy, proliferative changes with indication for panretinal laser coagulation, optic atrophy or advanced glaucoma, lens opacification more than NO3NC3C3P3 according to the LOCS III charts, patients receiving hemodialysis, and those unable to return to follow-up examinations were not included.

When fulfilling the inclusion criteria, patients were informed about the idea of the study. After consent to participate, an envelope was opened and the eye was randomized either to a vitrectomy group I (Gr I) or to a control group II (GR II). A written informed consent was obtained from all patients. Patients were followed up for 6 months. Evaluations were carried out at baseline and 1, 3, and 6 months after enrollment (P = .03 to .004 and P = .03 to .005, respectively).

Main outcomes were judged as follows:
● Changes of at least 10 letters in visual acuity for far evaluated with ETDRS charts in 2 m representing better (plus 10 or more letters), same, or worse (minus 10 or more letters).
● Changes of more than 2 lines in visual acuity for near using Jg charts representing better (minus 2 or more lines), same, or worse (plus 2 or more lines).

Examinations included biomicroscopy of the anterior and posterior segment, a functional assessment for far and near distances, and an evaluation of morphologic changes using OCT measurements of the retinal thickness and B-scan ultrasound examinations. Fluorescein angiograms (Heidelberg Retina Angiograph, Heidelberg Engineering GmbH, Heidelberg, Germany) were taken at each control.

All examinations were done at the same time of day by two independent ophthalmologists uninvolved in the selection and surgery of patients and without knowledge as to which group the patient belonged. The average of the two measurements was taken.

Distance acuity was tested with ETDRS charts under constant illumination density at a distance of 2 m with an addition of 0.75 spherical dioptries to the best correction for far distance. The letter score was multiplied with 0.01 for statistical calculation.

The reading ability was examined with Jaeger (Jg) charts at a distance of approximately 25 cm with an addition of four spherical dioptries to the best correction for far distance. This test regimen was not changed in the follow-up examinations. On these charts, Jg 1 represents the smallest and Jg 16 the largest type text. No reading acuity was registered as Jg 17.

To avoid temporal variations in macular edema thickness,26 OCT was always taken in the morning with the Humphrey Optical Coherence Tomograph 2 (Carl Zeiss, Humphrey Systems, Germany) through dilated pupils. The OCT examination consisted of six radial 6-mm-long scans of each eye, centered on the patient’s fixation point, at intervals of 30 degrees. Retinal thickness was computed automatically using OCT retinal mapping software. This mapping averaged the six scans to give the central macular thickness in an area 500 μm in diameter, that is, the average of 50 measurements.

Univariate analysis was performed to compare the functional results of both groups for far and near distances (χ-square test and tailed Fisher’s exact test) at each time point during follow-up. P values of less than .05 were assessed as significant.

Results of Early Treatment of Diabetic Retinopathy Study (ETDRS) Visual Acuity in Eyes Following Vitrectomy for Diffuse Diabetic Macular Edema (OP I) Compared With an Unoperated Control Group (CO II)*

<table>
<thead>
<tr>
<th>Time (mo after enrollment)</th>
<th>Group</th>
<th>Worsened > 10 letters</th>
<th>No Change</th>
<th>Improved > 10 letters</th>
<th>P value for Chi-Square</th>
<th>Fisher’s Exact Test P value (2-Tail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OP I</td>
<td>5 (20%)</td>
<td>7 (28%)</td>
<td>13 (52%)</td>
<td>.032161</td>
<td>.035381</td>
</tr>
<tr>
<td></td>
<td>CO II</td>
<td>8 (25.8%)</td>
<td>17 (54.8%)</td>
<td>6 (19.4%)</td>
<td>.036517</td>
<td>.035788</td>
</tr>
<tr>
<td>3</td>
<td>OP I</td>
<td>4 (16%)</td>
<td>11 (44%)</td>
<td>10 (40%)</td>
<td>.004880</td>
<td>.005814</td>
</tr>
<tr>
<td></td>
<td>CO II</td>
<td>12 (38.7%)</td>
<td>15 (48.4%)</td>
<td>4 (12.9%)</td>
<td>.004880</td>
<td>.005814</td>
</tr>
<tr>
<td>6</td>
<td>OP I</td>
<td>4 (16%)</td>
<td>8 (32%)</td>
<td>13 (52%)</td>
<td>.004880</td>
<td>.005814</td>
</tr>
<tr>
<td></td>
<td>CO II</td>
<td>13 (41.9%)</td>
<td>14 (45.2%)</td>
<td>4 (12.9%)</td>
<td>.004880</td>
<td>.005814</td>
</tr>
</tbody>
</table>

*The results are listed in absolute numbers of patients and percentages due to changes of more than 10 letters in both directions or unchanged values. Statistical evaluation (chi-square and Fisher’s exact test) revealed increasing significance for the vitrectomy group 1, 3, and 6 months after enrollment (P = .03 to .004 and P = .03 to .005, respectively).
Multivariate analysis was performed to test the evolution of all three scores (ETDRS, Jg, OCT). For each of the scores, mixed models for the levels (absolute levels) as well as for the differences to baseline were used. Time since the date of operation, a dummy variable for therapy, and the interaction of these two terms were included in each regression. The baseline value, age, and gender were also included as covariates. For the regressions using the differences, the time variable was used as a categorical variable and the least-squares means of the groups were compared. The models in levels included time as a continuous variable, so covariance analysis was performed by comparing slopes and intercepts of the regressions fitted for both groups.

Surgery was performed under general anesthesia by two surgeons (S.B., U.S.). A standard three-port vitrectomy was combined with removal of the posterior hyaloid. The internal limiting membrane (ILM) was stained with 0.1 ml of a 0.125% indocyanine green (ICG) solution for 30 seconds and removed with an end-gripping forceps. In patients who had mild cataract and who were older than 60 years, phacoemulsification of the lens with posterior chamber lens implantation was performed as a combined procedure. Postoperatively, topical antibiotic and anti-inflammatory therapy was administered three times daily over 4 weeks in both groups.

RESULTS

FIFTY-SIX PATIENTS FULFILLED THE STUDY CRITERIA. All patients completed the 6-month examination; there were no dropouts during follow-up, and no data were missing for statistical analysis. One patient experienced a stroke after the 3 months control but could perform the final evaluation. In both groups, antihypertensive therapy was not changed and HbA1c was kept under 8.0. The mean age was 61.4 years (range 28 to 74), 30.3% (17 of 56) were male, and 69.7% (39 of 56) were female.

Twenty-five eyes (44.6%) were randomized into Gr I (vitrectomy group) and 31 eyes (55.4%) to Gr II (controls). Both groups were comparable in mean age (62.7 years in Gr I and 63.9 years in Gr II) and gender (two thirds were female, one third was male). Six eyes in each group (21.4%; 12 of 56) were pseudophakic before enrollment.

Surgery was uneventful in all cases. In 32% (8 of 25) of the eyes, vitrectomy was combined with extraction of the mild cataract and posterior chamber lens implantation. During the early postoperative course, minimal cell flare in the anterior chamber was present in 28% (7 of 25) of the eyes operated on, which was sufficiently treated topically. There was no rise of the intraocular pressure. In two cases, a vitreous hemorrhage developed 5 and 10 days, respectively, after surgery and resolved spontaneously after 4 weeks in both eyes. In the control group (Gr II), B-scan ultrasound revealed no spontaneous separation of the posterior vitreous surface during follow-up examinations. The lens status was determined at each control and did not differ from the baseline examination.

Biomicroscopy showed an absorption of the edema at the final examination in 48% (12 of 25) of the eyes in Gr I compared with 22.7% (7 of 31) of the control eyes. In one eye of Gr I, a recurrent edema occurred after 3 months, leading to visual deterioration.

Final fluorescein angiograms showed a decreased leakage in the macula in 48% (12 of 25) of the eyes in Gr I compared with 22.7% (7 of 31) of the eyes in Gr II. In one eye of Gr I, a recurrent edema occurred after 3 months, leading to visual deterioration.

Visual acuity results for far are shown in Table 1. At baseline, ETDRS visual acuity ranged between 0.02 and 0.72, with an average of 0.28 in the vitrectomy group and 0.35 in the control group.

One month after surgery, 52% (13 of 25) of Gr I were improved in comparison to 19.4% (6 of 31) of Gr II. Twenty-eight percent (7 of 25), compared with 54.9% (17 of 31), were unchanged. Twenty percent (5 of 25) of the eyes in Gr I deteriorated, two of those due to a vitreous hemorrhage. In Gr II, 25.8% (8 of 31) of the eyes were

<table>
<thead>
<tr>
<th>Time (mo after enrollment)</th>
<th>Group</th>
<th>Worsened > 2 lines</th>
<th>No Change</th>
<th>Improved > 2 lines</th>
<th>P value for chi-Square</th>
<th>Fisher’s Exact Test</th>
<th>P value (2-Tail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OP I</td>
<td>2 (8%)</td>
<td>16 (64%)</td>
<td>7 (28%)</td>
<td>.43365</td>
<td>.46884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO II</td>
<td>5 (16.1%)</td>
<td>21 (67.7%)</td>
<td>5 (16.1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OP I</td>
<td>2 (8%)</td>
<td>16 (64%)</td>
<td>7 (28%)</td>
<td>.33448</td>
<td>.36998</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO II</td>
<td>7 (22.6%)</td>
<td>17 (54.8%)</td>
<td>7 (22.6%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OP I</td>
<td>3 (12%)</td>
<td>12 (48%)</td>
<td>10 (40%)</td>
<td>.01666</td>
<td>.01790</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO II</td>
<td>10 (32.3%)</td>
<td>18 (58.1%)</td>
<td>3 (9.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results are listed in absolute numbers of patients and percentages due to changes of more than 2 lines in both directions or unchanged values. Statistical evaluation (chi-square and Fisher’s exact test) revealed significance for the vitrectomy group only 6 months after enrollment (P = .016 and .017, respectively).

TABLE 2. Results of Reading Visual Acuity in Eyes Following Vitrectomy for Diffuse Diabetic Macular Edema (OP I) Compared with an Unoperated Control Group (CO II)*
the control group compared with baseline values (negative change in the average visual acuity over time in Multivariate analysis revealed a statistically significant highest significance was achieved for the final results. AUGUST 2005 295.e4 were shown at all time points with distribution of outcomes preferring the vitrectomy group 0.84) in the control group. 0.04 to 0.78) in the vitrectomy group and 0.28 (range 0 to 25) in Gr I compared with 45.2% (14 of 31) in Gr II were stable, and 16% (4 of 25) in Gr I versus 12.9% (4 of 31) in Gr II showed an increased vision compared with initially. Thirty-two percent (8 of 25) in Gr I compared with 42% (13 of 31) in Gr II deteriorated. The mean visual acuity was 0.32 (range 0 to 0.64) in the vitrectomy group (range 0.02 to 0.64) and 0.29 in the control group (range 0 to 0.64). At the 6-month follow-up, 52% (13 of 25) of the eyes in Gr I versus 12.9% (4 of 31) in Gr II showed an increased vision compared with initially. Thirty-two percent (8 of 25) in Gr I compared with 45.2% (14 of 31) in Gr II were stable, and 16% (4 of 25) in Gr I versus 42% (13 of 31) in Gr II deteriorated. The mean visual acuity was 0.32 (range 0.04 to 0.78) in the vitrectomy group and 0.28 (range 0 to 0.84) in the control group. Statistically significant differences at the 5% level in the distribution of outcomes preferring the vitrectomy group were shown at all time points with \(P \) values from .03 to .004 (\(\chi^2 \) test) and .035 to .005 (Fisher’s exact test). The highest significance was achieved for the final results. Multivariate analysis revealed a statistically significant negative change in the average visual acuity over time in the control group compared with baseline values (\(P = .03 \) for the time*therapy interaction term). There was a significant correlation with age, showing better results for younger patients (\(P = .0165 \)). Visual acuity results for near are shown in Table 2 (). At baseline, reading vision ranged between Jg 2 and 17 with an average of 12.2 in Gr I and 9.2 in Gr II.

After 1 month, an improvement of 2 or more lines was achieved in 28% (7 of 25) in Gr I compared with 16.1% (5 of 31) in Gr II. Sixty-four percent (16 of 25) in Gr I as opposed to 68.1% (21 of 31) in Gr II remained stable, and 8% (2 of 25) in Gr I compared with 16.1% (5 of 31) in Gr II deteriorated. The mean visual acuity was 11.28 (range 3 to 17) in the vitrectomy group and 8.9 (range 3 to 17) in the control group.

Three months after surgery, seven eyes improved 2 or more lines in both groups (28% in Gr I and 22.6% in Gr II). Sixty-four percent (16 of 25) of the eyes in Gr I and 54.8% (17 of 31) of the eyes in Gr II were unchanged. Eight percent (2 of 25) in Gr I compared with 22.6% (7 of 31) in Gr II worsened. The mean value was 10.88 (range 2 to 17) in the vitrectomy group and 9.16 (range 3 to 17) in the control group.

Univariate analysis revealed no statistical significance after 1 and 3 months (\(P \) values .33 to .46). At the final examination the vitrectomy group had significantly better results than the control group (\(P = .01 \)). In the multivariate analysis there was no statistically significant change in average for the vitrectomy group. The control group, however, showed a significant increase in the Jg score equivalent to a significant decrease of the reading vision during follow-up (\(P = .0136 \)).

OCT results are shown in the (Figure). At baseline, the mean foveal retinal thickness was 543.9 \(\mu \)m (range 412 to 722) in Gr I and 559.6 \(\mu \)m (range 402 to 710) in Gr II.

One month later, these values decreased significantly to 481.7 \(\mu \)m (range 279 to 712) in Gr I but remained unchanged in Gr II (mean 566.6, range 418 to 722).

At months 3 and 6, there were no more significant changes in both groups (\(P = .6 \) to .8). Finally, the mean foveal retinal thickness was 483.6 \(\mu \)m (range 268 to 722) in Gr I and 577.3 \(\mu \)m (range 425 to 724) in Gr II.

The mean change of macular thickness in both groups during follow-up was statistically significant. \(P \) values were <.0001 for months 1, 3, and 6 preferring the vitrectomy group. At all time points, the results in Gr I were significantly better compared with baseline (\(P < .0001 \)), whereas in Gr II there was no significant change to initial values (\(P = .4 \) to .1).

DISCUSSION

MACULAR EDEMA ASSOCIATED WITH DIABETIC RETINOPATHY is one of the main causes of visual acuity impairment in patients with diabetes. According to a population-based
The pathogenesis of diabetic macular edema is multifactorial, implicating duration of diabetes, insulin dependence, highly glycosylated hemoglobin, proteinuria, hypertension, and panretinal laser photocoagulation. The mechanism underlying the formation of diabetic edema is still unknown. The important pathology is the loss of pericytes in retinal capillaries leading to an increased permeability. Nasrallah and colleagues reported that the vitreous may play an important role in the development of macular edema. Sebag and associates demonstrated a high level of enzyme-mediated vitreous collagen cross-linking and nonenzymatic glycation in the human diabetic vitreous, probably affecting the collagen structure and causing destabilization of the gel structure of the vitreous. Such alteration of the vitreous attached to the retina could induce condensation and traction on the macula and contribute to the persistence of edema. Furthermore, various mediators that infiltrate the vitreous as a result of the breakdown of the blood-retinal barrier and induce macular edema remain in close contact to the macula in case of vitreomacular adhesion. Glycemia-related molecular changes may also alter and thicken the posterior vitreous surface, leading to less permeability and a high concentration of chemical mediators.

Several retrospective clinical studies showed that vitrectomy and removal of the posterior hyaloid lead to visual improvement of 2 or more lines in 38% to 92% of the eyes. These studies include small series with high success rates of 85% to 92%. In larger series of Tachi and Ogino, Pendergast and associates, LaHeij and colleagues, Yamamoto and associates, and Ndoye Roth and colleagues, a functional benefit after vitrectomy in approximately 50% of the cases was described. The necessity of ILM peeling is still unclear. Gandorfer and associates achieved the highest success rate (92%) after vitrectomy and ILM peeling, in a small series, whereas Kumagai and colleagues found no difference in the absorption rate of macular edema (more than 90%) or of the functional outcome, in a larger series, after vitrectomy with or without ILM peeling. In our series, ILM peeling was performed in all vitrectomy eyes based on our experience with earlier nonrandomized cases. To minimize potential toxic effects, ICG was diluted with 5% glucose solution, injected in an amount of 0.1 ml, and left for 30 seconds without illumination.

However, Hikichi and associates evaluated the natural course of diabetic macular edema associated with the vitreomacular relationship. They observed a spontaneous resolution of the edema in 55% of the eyes with an vitreomacular separation, in comparison with 25% of the eyes with vitreomacular adhesion. Visual acuity improved in 36%, compared with 15% during an observation time of 6 months, which is comparable to the results in the control group (13% to 19%).

On the basis of these results, we prospectively compared two randomized groups of eyes with diabetic macular edema. The outcome for distance visual acuity turned out to always be significantly better in eyes undergoing operation than in controlled eyes (P = .03 to .004). The percentage of eyes that improved more than 2 lines was 52% at the final examination, which corresponds well with the results of the aforementioned studies. Although a significant change could not be found for reading vision within 3 months after enrollment, the eyes operated on have a significantly better reading vision than the eyes of the control group (P = .01) at the end point.

The multivariate analysis of ETDRS and Jg values gave us additional information. The average scores showed a trend in favor of Gr I but did not change significantly over time compared with the baseline scores in both groups. The control group, however, showed a significant decrease in reading vision during follow-up. The interaction therapy*time was significant and negative for ETDRS vision, confirming a decrease with time for the control group. Larger case series and longer observation time might become helpful to explore these results further. As expected, the coefficient for age was also significant and negative, implying a decreased score for older patients, which means a better prognosis for younger patients.

The multivariate analysis of the OCT measurements showed a markedly different behavior between both groups. Whereas the control group achieved on-average stable values, there was a sharp decrease in the vitrectomy group (significance P < .0001) after 1 month, which then stabilized (P = .6 to .8). The differences between both groups were highly significant at any time (P < .0001).

A previous study by Yamamoto and associates also demonstrated a marked reduction of retinal thickness 7 days after vitrectomy, which then remained unchanged for approximately 1 month. This effect could be observed until 4 months postoperatively. They suggested that an improved oxygen concentration caused retinal vasoconstriction with subsequent decrease of leakage, as also postulated by Stefansson and colleagues.

The evaluation in the present randomized study showed a more distinct morphologic effect of the surgery on the macular thickness than a functional effect, which was higher in ETDRS vision than in reading vision. There was a significant correlation to age, probably expecting better results when vitrectomy is performed earlier. In addition, these results might become better if no grid laser treatment has been performed before surgery, which was already stated by LaHeij and associates.

The role of development of postoperative cataract is always difficult to assess in vitrectomy studies in an elderly population. The LOCS III system was used, therefore, to ensure that only patients with very mild cataract were included and to grade potential changes. Because of the
more rapid development of nuclear sclerosis after vitrectomy in elderly patients, a combined surgery was performed in our study in patients older than 60 years. We strongly believe that the pros and cons compensate, because in two thirds of the patients only vitrectomy was performed, and in one third a combined surgery was performed. However, we cannot completely exclude that cataract surgery might have an impact on the functional results.

To our current knowledge, this is the first prospective randomized trial on vitrectomy for diffuse diabetic macular edema. Its weakness is the rather small number of cases and potentially too short follow-up. Larger numbers and longer observation time might provide us with additional information about the value of vitreous surgery in the treatment of diffuse diabetic macular edema, which is a disease of multifactorial origin. However, in eyes with an adherence of the vitreous, the mechanical removal of the vitreous and the release of adherent membranes in the foveal area seem to be one of the main influencing factors.

In conclusion, we provide evidence that vitrectomy with ILM peeling is superior to observation in eyes with persistent diffuse diabetic macular edema for at least 6 months and positively influences distance and reading visual acuity as well as the morphology of the edema. However, to exclude temporary improvements, longer follow-up and larger series will be needed to confirm these data.

REFERENCES

Ulrike Stolba, MD, has worked at the Department of Ophthalmology, Rudolf Foundation Hospital Vienna, Austria; Department of Ophthalmology, University Eye Clinic, Vienna, Austria; Department of Ophthalmology, University Eye Clinic, Vienna, Austria. From 1986 to 1995, she studied at the Department for Vitreoretinal Diseases at the Department of Ophthalmology, University Eye Clinic, Vienna, Austria and at the Department of Ophthalmology, University of Vienna, Austria. Dr. Stolba has published 54 articles in English, German and French, and has contributed 10 book chapters. Her main interests are microsurgery, especially vitreoretinal surgery, diagnosis and treatment of AMD and diabetic complications, research in vitreous substitutes, AMD, and diabetes.
Biosketch

Susanne Binder, MD, has been the chairman of the Department of Ophthalmology, Rudolf Foundation Clinic, since 1995, and has also been chairman of the Ludwig Boltzmann Institute of Retinology and Biomicroscopic Laser Surgery since 1997, both in Vienna, Austria. In addition, Dr. Binder has worked at the University Eye Clinic B, Vienna General Hospital, University of Vienna Medical School, Vienna, Austria; Professor of Ophthalmology, University Eye Clinic, Vienna, Austria; Vitreoretinal Diseases, First University Eye Clinic, Vienna, Austria. She has published 142 articles in English and German, edited two books, published 30 surveys and book chapters, in addition to 24 miscellaneous articles. As an editor, Dr. Binder has served on the editorial board of Graefe's Arch Clin Exp Ophthalmol; Ophthamologica; the editor-in-chief of Spektrum der Augenheilkunde, The Journal of the Austrian Ophthalmological Society. Primary interests include microsurgery, vitreoretinal surgery and -diseases, research in AMD, especially retinal transplantation, retinal vascular diseases. She is a member of AAO, ARVO, Retina Society, Association of Retinal Specialists, Club Jules Gonin, and other national and international societies.