Prevalence, Incidence and Nature of Prescribing Errors in Hospital Inpatients
A Systematic Review

Penny J. Lewis,1 Tim Dornan,2 David Taylor,3 Mary P. Tully,1 Val Wass2 and Darren M. Ashcroft1

1 School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK
2 Manchester Medical School Education Research Group, Manchester, UK
3 Liverpool Medical School Education Research Group, Liverpool, UK

Contents

Abstract ... 379
1. Literature Search Methodology 380
 1.1 Search Strategy .. 380
 1.2 Inclusion and Exclusion Criteria 381
 1.3 Data Abstraction and Validity Assessment 381
 1.4 Quantitative Data Analysis 381
2. Literature Search Results .. 381
 2.1 Study Characteristics .. 381
 2.1.1 Country and Date .. 381
 2.1.2 Types of Hospitals 382
 2.1.3 Numbers of Hospitals 382
 2.1.4 Specialties .. 382
 2.1.5 Study Design .. 382
 2.1.6 Methods of Error Detection 382
 2.1.7 Validation Review of Errors 383
 2.2 Definitions of Prescribing Errors 383
 2.3 Prevalence and Incidence of Prescribing Errors 383
 2.4 Medications Involved in Prescribing Errors 384
 2.5 Types of Prescribing Errors Detected 384
 2.6 Severity of Detected Prescribing Errors 384
3. Discussion ... 384
4. Conclusions ... 386

Abstract

Prescribing errors affect patient safety throughout hospital practice. Previous reviews of studies have often targeted specific populations or settings, or did not adopt a systematic approach to reviewing the literature. Therefore, we set out to systematically review the prevalence, incidence and nature of prescribing errors in hospital inpatients. MEDLINE, EMBASE, CINAHL and International Pharmaceutical Abstracts (all from 1985 to October 2007) were searched for studies of prescriptions for adult or child hospital
In recent years, the extent and impact of adverse events in healthcare settings has made patient safety a key aspect of healthcare policy. Specifically, the Harvard Medical Practice study found adverse events in at least 3.7% of admissions, mostly associated with the use of medication. Adverse drug events (ADEs) can prolong hospitalization, increase mortality risk 2-fold and cause an estimated 7000 deaths/year in the US alone. Moreover, a US study in 1997 estimated that ADEs cost a single teaching hospital $US5.6 million, $US2.8 million of which was preventable. In the UK, preventable ADEs cost an estimated £750 million nationwide.

The negative impact of preventable ADEs has thus stimulated attempts to understand the nature and extent of medication errors. They can occur at the prescribing, dispensing and administration stages of drug use, but are most likely to arise in prescribing. Research into the prevalence or nature of prescribing errors has found no consistent pattern in the number or types of errors, or medications associated with them. Single-hospital studies found, for example, prescribing errors in 0.4–15.4% of prescriptions written in the US and in 7.4–18.7% of those written in the UK.

There have been previous attempts to synthesize data systematically from studies of prescribing errors. However, they were either limited in scope (such as focusing on a particular patient group or speciality), concerned predominately with research methodology or have incorporated all types of medication error. None have focused on the prevalence or incidence of prescribing errors more generally. The aim of this systematic review was, for the first time, to identify all informative, published evidence concerning the prevalence, incidence and nature of prescribing errors in specialist and non-specialist hospitals, and collate, analyse and synthesize conclusions from it.

1. Literature Search Methodology

1.1 Search Strategy

The following electronic databases were searched: MEDLINE and MEDLINE In-process and other Non-Indexed Citations, EMBASE, CINAHL and International Pharmaceutical Abstracts, all from 1985 to October 2007. The search strategy was developed by two authors (PJL and DMA). Search terms included: ‘error(s)’;
‘medication error(s)’; ‘near miss(es)’; ‘preventable adverse event(s)’; ‘prescription(s)’; ‘prescribe’; ‘medication order(s)’; ‘incident report(s)’; ‘incidence’; ‘rate(s)’; ‘prevalence’; ‘epidemiology’; ‘inpatient(s)’; ‘hospital(s)’; and ‘hospitalization’. (Further details of the search strategy are available from the corresponding author). The reference lists of all included studies were searched for additional studies.

1.2 Inclusion and Exclusion Criteria

Studies published in English between 1985 and 2007 that reported on the detection and rate of prescribing errors in prescriptions handwritten for adult and/or child hospital inpatients were included. Systematic reviews, randomized controlled trials, non-randomized comparative studies and observational studies were all included. Abstracts were included if they provided sufficient data to calculate prescribing error rates (prevalence or incidence). Studies that only provided data on electronic prescriptions via computerized physician order entry (CPOE) were excluded. In addition, studies that evaluated errors for only one disease or drug class or for one route of administration or one type of prescribing error were excluded.

1.3 Data Abstraction and Validity Assessment

A data-extraction form was designed to extract the following information: year and country; study period; hospital setting; methods (including type of study; sampling and review processes; profession of data collector; means of detecting error); definitions used; the error rate (including the nature of the denominator) [for studies investigating the impact of CPOE, only error rates for prescriptions that were handwritten were extracted from the study]; and any other relevant information captured by the study, such as severity of errors, type of error and medications commonly associated with errors. Two reviewers extracted relevant data from each publication independently and resolved any differences by discussion. If they could not achieve consensus, a third reviewer arbitrated.

1.4 Quantitative Data Analysis

The studies retrieved by the search were extremely heterogeneous but it was possible to group them by the type of denominator used and calculate median error rates and interquartile ranges (IQRs) across studies. Studies reporting medication errors were only included if it was possible to separate out the rate of prescribing errors. To be included, studies had to report the rate of erroneous orders, errors per admission or errors per patient day. Studies with an estimated denominator were excluded from the analysis of median rates. To facilitate comparison across studies, the latter rates were converted to common denominators: rates per 100 admissions and per 1000 patient days. When publications gave data from two or more studies where the methodology was similar, the results were aggregated into a median rate. We also explored differences between studies of adults and children and examined error rates in relation to methods of detection. The classification scheme of Thomsen and colleagues provided a framework for extracting and reporting the types of medications involved and the types of errors.

2. Literature Search Results

The electronic search identified 595 publications. After initial screening of the abstracts, 493 publications did not meet the inclusion criteria. The remaining 102 publications were obtained in full text and assessed for suitability, as shown in figure 1. Searching of the reference lists of the included publications identified a further 12 eligible studies. In all, 63 publications were included, reporting 65 unique studies. The main reasons for exclusion were absent or insufficient data to calculate prevalence rates (n = 36); data included administration errors, outpatient prescriptions, and/or verbal and electronic prescriptions (n = 7); reported rates were of interventions or violations of policy not deemed errors (n = 5); and duplication of previously published data (n = 3).

2.1 Study Characteristics

2.1.1 Country and Date

Most studies were conducted in the US (25/65) or the UK (22/65). Other
countries included Canada (n = 3),[59-61] the Netherlands (n = 3),[62-64] India (n = 2),[65,66] Australia (n = 2),[67,68] Israel (n = 2),[69,70] Croatia (n = 1),[71] Belgium (n = 1),[72] France (n = 1),[73] Denmark (n = 1),[74] Thailand (n = 1)[75] and Spain (n = 1).[76] Over two-thirds of studies were published after 2000 (46/65).

2.1.2 Types of Hospitals
Fifty-four percent of studies (35/65) were conducted in university-affiliated hospitals, 17% (11/65) took place in general hospitals and 6% (4/65) were carried out in both types of hospital. Six studies (9%) were conducted in paediatric hospitals. Two studies (4%) did not state the type of hospital.[25,67] The rest (11%, 7/65) were conducted in specialist hospitals such as mental health facilities.

2.1.3 Numbers of Hospitals
Eighty-four percent of studies (55/65) were carried out on single hospital sites, 11% (seven studies) were carried out in two hospital sites, 3% (two studies) in nine sites[21,56] and 2% (one study) in 24 sites.[54] However, studies carried out in more than two hospitals were conducted in one speciality only (paediatric intensive care unit [ICU],[21] ICU,[54] and mental health[56]).

2.1.4 Specialties
Thirty-eight percent (25/65) of studies were carried out only in adult specialities or wards, 22% (14/65) included only children’s specialities or were conducted exclusively in paediatric hospitals (including one study conducted purely in neonates[76]), 23% (15/65) included both adults and children, and the remaining 17% (11/65) did not state the age range of patients.

2.1.5 Study Design
Most studies (89%, 58/65) were prospective in design; 11% (7/65) were retrospective. The shortest period of data collection was 4 days[51] and the longest was 9 years.[32] Twenty-three (35%) of the studies were before-and-after studies, in which case-only data from the baseline or control arm were used. Eleven of these assessed the impact of CPOE on the number of prescribing errors[9,20,30,33,41,44,45,49,64,70,72] and the remainder assessed a variety of other interventions, such as the participation of clinical pharmacists on ward rounds[31,40] or the effect of educational interventions.[10]

Eighty-three percent (54/65) of studies were process-based, meaning they reported the findings of healthcare professionals reviewing prescriptions, usually as part of routine work.[14] This type of study does not intend to measure harm as the error is detected and reported to the prescriber before reaching the patient. Outcome-based studies only measuring actual patient harm by reporting ADEs[14] made up only 3% of included studies.[18,31] A small proportion (14%) of studies were both process- and outcome-based in that they investigated both incident reports (some of which included actual ADEs) and prescribing errors detected on prescriptions.

2.1.6 Methods of Error Detection
Data collectors were most commonly pharmacists (54/65, 83%). The most frequent method
of detecting errors (25/65, 38%) was the screening of prescriptions. Eighteen percent (12/65) of studies also included prescription or prescription chart review, which was not necessarily part of routine work and which was sometimes carried out by healthcare professionals other than pharmacists. Four studies (6%) [26,31,41,71] detected prescribing errors by review of patients’ medical records and five studies (8%) [30,58,65,68,75] used incident reporting. Almost one-third of studies (27%) used a combination of the above methods and some even included additional methods such as stimulated self report [59], medication reconciliation [61] and interviews with other healthcare professionals [42]. Two studies did not state how prescribing errors were identified [22,62].

2.1.7 Validation Review of Errors
Seventy-four percent (48/65) of studies employed a process to check the validity of part of or all the prescribing error data collected. The validation approach varied between studies, some (14%, 9/65) using consensus to rate the severity of errors. Fewer than half the studies (42%, 27/65) included review of the errors themselves, such as determination by a panel of clinicians as to whether reported errors fell within the study definitions and classification of those that did. Only 28% of studies (18/65) checked reported errors with the prescribing doctor to validate the claim that a prescribing error had occurred. Twenty-three percent of studies (15/65) did not report any process of review.

2.2 Definitions of Prescribing Errors
The definition of a prescribing error was extremely varied, with 42% of studies (27/65) developing their own definitions or modifying ones used in previous studies. Eleven studies (17%) used a definition of prescribing errors developed by Dean et al. [77] The 12 studies (18%) recording medication errors or ADEs provided definitions accordingly. Of these, two [24,74] used the American Society of Health-System Pharmacists criteria and two [26,76] used the National Coordinating Council for Medication Error Reporting and Prevention (NCCMERM) criteria. Nearly one-quarter of studies (23%) did not state any definition.

2.3 Prevalence and Incidence of Prescribing Errors
Five studies [52,62,67,71,76] either explicitly used prescription charts (with potentially multiple medication orders) or did not clearly state their denominator (whether order or chart). Four studies provided an estimated denominator [47-49,51] and were therefore excluded from the analysis. Studies reporting error rates per medication order, per patient and per patient day and that are included in the analysis are presented in table I of the supplementary material (see the supplementary material ['ArticlePlus'] at http://drugsafety.adisonline.com).

Many studies (51%, 33/65) reported the percentage of erroneous medication orders, the median of which was 7% (IQR 2–14%). Six studies did not make it clear whether orders were reported as having more than one error and could not, therefore, be included in the calculation [17,22,33,39,60,69]. Nineteen studies provided a rate of errors per admission, the median of which was 52 (IQR 8–227) errors per 100 admissions. This wide range in rates could partly be explained by different means of error detection, the lowest rate (0.4 errors per 100 admissions) being derived from incident reporting [75] and the highest rate (323 errors per 100 admissions) resulting from a combination of three methods of error detection [66]. Eleven studies provided an incidence of errors per patient days, the median of which was 24 (IQR 6–212) errors per 1000 patient days. The only two outcome-based studies included in this review reported incidences of errors per patient days [18,31] the median of which was nine errors per 1000 patient days. A subgroup analysis of the remaining nine process-based studies gave a median incidence of 116 errors per 1000 patient days. The lowest incidence of errors was given by a study that used incident reports to detect errors [30] and the highest rate was given by a process-based, prospective study of error in an ICU [72].

Subgroup analysis of studies reporting percentage of erroneous orders suggested that errors
were more prevalent in adults than in children (median 18% [ten studies, IQR 7–25%] vs median 4% [six studies, IQR 2–17%]).

2.4 Medications Involved in Prescribing Errors

Twenty-two studies (34%) detailed the medications most commonly associated with prescribing errors, and those providing quantitative data are summarized in table II of the supplementary material. Four studies gave information about the classes of medication associated with medication error; however, class-specific prevalence rates could not be determined.\cite{18,29,38,59} Antimicrobials, with a median error prevalence of 32% of orders, were the class most commonly associated with error, particularly in children where all five studies found antimicrobials to be most commonly associated. Other common associations were with drugs acting on the cardiovascular system (median prevalence, 17%), CNS (median prevalence, 8%) and gastrointestinal medications (median prevalence, 8%). Errors involving fluids, electrolytes and parenteral nutrition had a median prevalence of 9%.

2.5 Types of Prescribing Errors Detected

Sixty-five percent of studies (42/65) reported on the types of errors, of which 33, shown in table III (see supplementary material), provided percentages for error types. Five studies focused specifically on admission or discharge and were therefore excluded from the table as it was likely the types of error would be quite specific (i.e. errors of omission). Dosage errors were the most commonly reported error (18/33 studies), the remainder being accounted for by incomplete prescription orders, omission of therapy, illegibility, errors in dosage interval, incorrect formulation, drug-drug interactions and transcription errors. Seven studies\cite{23,25,33,35,58,65,75} listed the most frequent types of prescribing errors in paediatric practice. Five of the seven (71%)\cite{23,35,58,65,75} found dosage errors to be the most common, and the remaining two studies found errors of omission to be the most common.\cite{25,33}

2.6 Severity of Detected Prescribing Errors

Many studies (74%, 48/65) attempted to classify the severity of errors; however, some (8/48) did not distinguish prescribing errors from errors in administration and dispensing. Two studies, which stated they recorded severity, did not report severity data. Of those that reported severity, three studies\cite{20,63,64} rated severity according to their own modification of the NCCMERP index for categorizing medication errors.\cite{78} one study\cite{43} used criteria set out by the UK National Patient Safety Agency\cite{79} to rate severity and two studies\cite{19,34} based their criteria on the work of others such as Folli et al.\cite{23} Remaining studies provided their own classification of prescribing-error severity. This disparity made it impossible to compare severity across studies.

3. Discussion

This is the first systematic review of the prevalence, incidence and nature of prescribing errors in hospital inpatients. It shows that a high rate of prescribing errors is an international problem. The median rates of prescribing errors using three different denominators were 7% (IQR 2–14%) of medication orders, 52 (IQR 8–227) errors per 100 admissions and 24 (IQR 6–212) errors per 1000 patient days. A key strength of our review was the range of databases searched. It is possible that studies reporting error prevalence or incidence were published in journals not indexed by the databases. To reduce that risk, we conducted a search of the reference lists of the included studies. However, only studies published in English were included and there may have been studies written in other languages that were not detected.

The reported rates of prescribing errors vary remarkably, as demonstrated by the wide IQRs. This variability can be partly explained by differences in study methods; for example, outcome-based studies inevitably yielded much lower error rates than process-based studies as actual patient harm is not an inevitable outcome of a prescribing error. However, that does not explain all the variability because most studies were process-based.
The method used to detect errors may have been a more important source of variability; for example, studies relying on incident reports often had very low error rates, probably as a result of under-reporting. Review of patient records identified more errors but still only those noted in the records and therefore this approach remains vulnerable to incomplete documentation. Furthermore, the retrospective nature of record review gave little opportunity for follow-up. Studies that identified errors during prescription review were likely to be the most comprehensive and accurate, yet there was still great variation between rates derived from that method of error detection. Furthermore, the use of more than one means of error detection introduced yet further variability, although the higher rates that resulted from more comprehensive ascertainment may have been closer to the actual prevalence.

Another important consideration was inconsistency in the definition of prescribing errors, with most studies using their own bespoke definitions. Even when definitions were given, some were subjective. For example, a prescribing error is ‘a prescription not appropriate for the patient’ or ‘any omitting or incorrect ordering of a medication that was critical for the overall care of the patient in the judgement of one of the investigators’. However, others were very specific in their definition: ‘a prescribing error is an incorrect drug selection (based on indications, contraindications, known allergies, existing drug therapy and other factors), dose, dosage form, quantity, route, concentration, rate of administration, or instructions for use of a drug product ordered or authorized by a physician (or other legitimate prescriber); illegible prescriptions or medications or orders that lead to errors that reach the patient; or use of non-standard nomenclature or abbreviations’. Reviews in pediatric and mental healthcare have also found large variations in how prescribing errors were defined. This source of variability has resulted in the formulation of a practitioner-led definition of a prescribing error. That definition was the one most commonly used, albeit in only 17% of studies.

Whilst the evidence base as a whole was characterized by variability, there were specific limitations in individual studies, such as poor classification of errors. Fewer than half of studies reported any system of error validation. Most did not state whether there was any discussion of errors with the original prescriber. The finding in one study that 13% of errors detected by a pharmacist were not accepted by the prescriber suggests a discrepancy between observers and the prescribers’ perceptions of error. Classification of errors by the data collector without the input of others could result in bias. Furthermore, one study showed variability in error detection and classification between data collectors despite training. Few studies commented self-critically upon this source of potential bias.

Other limitations of the included studies were the short duration of data collection and the use of estimated denominators in some studies. Although not a limitation per se, the location and type of study site may also have affected the reported rates and types of prescribing errors. Some studies were conducted in specific contexts such as psychiatric hospitals or ICUs whereas others focused on a particular stage of the patient’s stay in hospital such as admission or discharge. These studies showed higher numbers of particular types of error such as duplication or omission. Furthermore, most studies were on single sites and there were no studies of larger numbers of errors in non-specialist hospitals. With this in mind, future studies could usefully apply the same methods to record prescribing errors across numerous non-specialist sites.

The severity of detected prescribing errors is important information because, without it, we cannot evaluate the potential harm that could result from them. For example, our results have shown that antimicrobials are associated with the most errors, yet studies have shown that it is cardiovascular medications that are associated with the most preventable ADEs. However, the lack of standardization between severity scales made it impossible to compare results directly.

We found errors of dosage to be the most commonly reported type of prescribing error, as
was also reported from a systematic review of medication errors in children. Winterstein et al. also found dosage errors to be the most common type of medication error and that most medication errors were initiated during prescribing. Furthermore, clinical negligence claims are most often associated with errors in dose, strength or frequency. So, there is an obvious target for preventive measures, some of which are already being put into place by means of CPOE systems. Previous research in the US has shown that a computer-assisted antimicrobial management programme can reduce ADEs and costs, a finding that might be extended to other healthcare settings. Interestingly, some studies we reviewed were designed to determine the effect of CPOE on error rates and they found improvements in dosage errors and errors of omission. However, they also reported errors unseen with paper-based prescriptions, such as double prescriptions. Work in this area has also highlighted that there can be many unintended consequences of CPOE including both positive and negative effects. As well as improvements in systems, education has been highlighted as an area for improvement. A survey of junior doctors in the UK found that doctors themselves would welcome more teaching in clinical pharmacology, particularly covering drug dosing.

What was also apparent in this review was the importance of healthcare professionals in the process of error detection. Pharmacists were particularly well placed to collect data on errors and were commonly recruited for that purpose. Furthermore, a study by Phansalkar et al. found that pharmacists were the most thorough when conducting chart reviews. Despite this, some errors may remain undetected.

4. Conclusions

Prescribing errors are common, affecting a median of 7% of medication orders, 2% of patient days and 50% of hospital admissions. The majority of included studies were process-based and used pharmacists to collect data. Antimicrobials and drug dosages were most frequently associated with errors. However, the ranges around these findings are very broad and, to some degree, are conditional upon each study’s purpose, setting and methods. The lack of standardization between different studies, especially around definitions and data-collection methods, was a barrier to understanding the extent of prescribing errors and is an obvious area of development for future research. If standardization could be achieved, the results of individual studies could more confidently be combined, providing a clearer picture of the prevalence, incidence and nature of prescribing errors. Despite the difficulty of aggregating error data, our findings highlight that this is an important area for future research, in both methodology and intervention, to ensure patient safety.

Acknowledgements

The authors would like to thank Kathryn Bell for her assistance with data extraction.

This systematic review was commissioned by the UK General Medical Council to contribute to the evidence base informing policy developments. The authors have no conflicts of interest that are directly relevant to the content of this review.

The protocol was designed by all authors. The searches were designed by Penny J. Lewis and Darren M. Ashcroft and conducted by Penny J. Lewis. All authors were involved in extracting data from the publications. Penny J. Lewis and Darren M. Ashcroft analysed the results and Penny J. Lewis prepared the first draft of the review. All authors commented on subsequent drafts.

References

Prescribing Errors in Hospital Inpatients

2009 Adis Data Information BV. All rights reserved. Drug Safety 2009; 32 (5)

53. Olsen S, Neale G, Schwab K, et al. Hospital staff should use more than one method to detect adverse events and potential adverse events: incident reporting, pharmacist surveillance and local real-time record review may all have a place. Qual Saf Health Care 2007 Feb; 16 (1): 40-4

Correspondence: Dr Penny J. Lewis, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Stopford Building, Oxford Rd, Manchester, M13 9PT, UK. E-mail: penny.lewis@manchester.ac.uk