REVIEW

Generic cyclosporine formulations: more open questions than answers

Dario Cattaneo,1,2 Norberto Perico1,2 and Giuseppe Remuzzi1,2

1 Department of Medicine and Transplantation, Ospedali Riuniti di Bergamo, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
2 Center for Research on Organ Transplantation, ‘Chiara Cucchi De Alessandri & Gilberto Crespi’ Mario Negri Institute for Pharmacological Research, Ranica, Bergamo, Italy

Introduction

Cyclosporine (CsA), one of the principal immunosuppressants currently used to prevent graft rejection, has largely contributed to improve patient and allograft survival [1].

CsA is characterized by a narrow therapeutic index, significant side effects, and a strong correlation between CsA exposure and clinical outcome. To this, major efforts have been devoted to individualize CsA dosing based on pharmacokinetic parameters, in order to minimize the toxicity and improve the risk-to-benefit ratio [2].

Despite more than 20 years of its clinical use, one of the challenge in CsA management is the poor, variable and unpredictable absorption, associated with a great intra- and inter-patient variability. This is a key factor, since the greater the day-to-day variability in CsA exposure, the higher the risk of acute rejection in organ transplant recipients [3]. It has been also shown that high intra-individual variability of CsA exposure enhances chronic rejection incidence, and eventually health care costs [4]. These observations underline the role of the pharmaceutical formulation and related factors to clinical outcome. The excipients used in a drug formulation are, by definition, inactive and play no role in the pharmacological action of the drug. However, early [5,6] it was realized that the nature of the excipients, and changes in the way oral drug preparations were formulated could have very great effects on the amount of drug absorbed. In addition, some excipients are known to modify the activity of the multidrug resistance proteins (MDR1), an efflux pump which removes lipophilic drugs from the intracellular space, and/or metabolic enzymes like cytochrome P450 subclass 3A4 [7]. Thus, the variable oral CsA bioavailability represents a biopharmaceutical risk factor and deserves particular attention when new formulations are used.

Limits of the CsA Sandimmune formulation

Sandimmune (Novartis, Basel, Switzerland), an oil-based suspension of CsA immiscible with water, was first used...
in preclinical studies in 1977 and thereafter, introduced in clinical practice in 1984 [8].

The bioavailability of Sandimmune is extremely variable, ranging from 5% to 50%. This formulation is characterized by intra-individual erratic oral absorption, greatly influenced by bile flow, the composition of biliary, pancreatic, and duodenal/small bowel secretion, the function and motility of the small bowel, and food [9,10].

The excipients may also play a significant role, influencing the pharmacokinetic properties of Sandimmune. Recently, it has been shown that Sandimmune capsules, where the drug is dissolved in olive oil in a soft gelatin capsule, and Sandimmune solution, where the drug is dissolved in corn oil, were not bioequivalent in a subset of poor absorbers [11]. Indeed, it should be taken into account that inter-individual variation in the Sandimmune absorption has been also reported, which segregates three distinct populations of patients, defined as ‘low’, ‘intermediate’, and ‘high’ absorbers [12].

To overcome these limitations, therapeutic drug monitoring and adjusting CsA Sandimmune dose to individual need of CsA trough blood levels (C0) has widely adopted. However, with this CsA formulation, the pharmacokinetic approach is not of universal help, as documented by findings that some patients experience acute graft rejection even in the presence of adequate or high blood CsA concentration, while others develop toxicity at CsA trough level below normal [13].

The variations in CsA absorption profile with Sandimmune led to efforts in developing a new CsA formulation.

The novel CsA Neoral formulation

The new formulation, CsA Neoral (Novartis, Basel, Switzerland), was based on a microemulsion that in the gut disperses more rapidly, leading to increased and more reproducible absorption profile compared with the old formulation. As a consequence, a closer pharmacokinetic relationship between CsA trough concentration and area under the time–concentration curve (AUC0–12) [14,15] was reported. These findings renewed the interest for the application of CsA therapeutic drug monitoring.

The favorable kinetic profile of Neoral compared to the conventional formulation was confirmed in the early phase post-transplant [16] as well as in stable renal transplant recipients [17]. Although safety and tolerability of the two formulations were comparable, the incidence of acute rejection was lower in the Neoral group. In patients previously treated with Sandimmune, the conversion to Neoral was associated with an increase in the CsA exposure. Of note, 20% of patients categorized as ‘low’ absorbers while on traditional formulation, became ‘intermediate’ or ‘high’ absorbers as early as 15 days after conversion to Neoral (Fig. 1), further supporting the beneficial pharmacokinetic effect of the new formulation.

The advent of Neoral, with its peculiar kinetic profile, has also provided new opportunities to explore more sensitive and feasible CsA monitoring strategies as surrogate markers of drug exposure in transplant patients. Several single- or limited-sampling point tools have been developed so far for patients on Neoral-based immunosuppression [18]. On this line, recent evidence in liver and kidney transplant recipients indicate that 2-h postdose point sampling (C2) is a sensitive tool for fine-tuning CsA dosage [19,20] when Neoral formulation is used.

The more reproducible absorption and blood CsA concentrations achieved with Neoral are likely to result in the reduction in the incidence of acute rejection episodes in the early period as well as in the stable transplant recipients [21].

Overall, these observations further underline the impact of the pharmaceutical formulation on patient monitoring and clinical outcome and support the superiority of the

Figure 1 CsA blood concentration in ‘low’ absorber patients before (Sandimmune) and after conversion to Neoral formulation (day 15 and month 6) (modified from [17]).
CsA Neoral over the traditional Sandimmune formulation.

The advent of novel CsA generic formulations

In clinics the use of generic products is widespread and now plays an important role in the available therapeutic armamentarium. This also applies to transplant medicine. Several drugs which represent cornerstone in the therapeutic management of transplant patients currently have generic alternatives, including those belonging to antihypertensive and immunosuppressant classes.

Because the efficacy and safety of an ‘innovator’ drug has already been established, the regulatory agencies for drug approval, like CPMP (Committee for Proprietary Medicinal Products for bioequivalence testing in Europe for EMEA) and FDA, use simplified approval process for generic drug products [22,23]. Specific requirements are that generic formulations have to contain the same molecular entity and should prove to be bioequivalent with the innovator’s product. Theoretically, the generic preparations would improve adherence to treatment for their lower cost in countries with no social insurance. The introduction of generic drugs in routine clinical practice, therefore, would significantly improve the quality of care, or even, allowing access to therapy in patients living in emerging countries where the health resources are already limited. However, are the concepts of generic formulations applicable to all drugs, including those with narrow therapeutic range- or critical dose-drugs, like CsA?

In 1995, Novartis’ composition of matter patent on CsA expired. Since then, other companies are free to manufacture interchangeable generic products. Up to now, several generic CsA formulations have been developed [24–31], and most of them have recently become available in Europe. They demonstrate bioequivalence criteria according to the current regulations [32]. Unfortunately, these rules apply indiscriminately to all drugs, independently of whether they belong to narrow therapeutic range and critical dose agents. Actually, the bioequivalence guidelines for approval of generic formulations require a similar average bioavailability compared with the reference formulation, with the 90% confidence interval of the relative mean AUC and C_{max} of the test to reference formulation within 0.8–1.25 [33]. The main limitation of this approach is the subject population currently used to test the bioequivalence criteria. Indeed, most of the comparative studies involve selected groups of young, male, healthy subjects. But, the findings are then extended to completely different population, such as transplant recipients. However, growing body of evidence shows that CsA pharmacokinetics in healthy subjects is different from that of transplant patients.

Moreover, several of the bioequivalence studies consider single CsA dose administration, but this is not the best approach for testing, since CsA absorption varies with time, and the drug formulation may influence the time to reach the steady state [34]. A single-dose pharmacokinetic assay, which is the present requirement for bioequivalence, does not measure variability of drug exposure, C_{max} or T_{max} as the patient progresses towards the steady state. Single-dose bioequivalence also does not capture any metabolic differences that may occur in a transplant patient. Since CsA is characterized by a narrow therapeutic index and serious drug-related toxicity, it is not ethical to expose healthy subjects to repeated, chronic dose of the drug. Therefore, single-dose testing in these subjects is considered sufficient to assess bioequivalence. However, this should be only the starting but not the final step. More pertinent it would be to confirm bioequivalence in organ transplant recipients after repeated drug dosing, when exposure to CsA is stabilized [34]. Differences in the pharmacokinetic pattern according to CsA formulations have been observed in different populations including children [35], and blacks [36]. Also diseases, such as diabetes [37] predispose patients to altered absorption of CsA. In addition, the type of transplanted organ can influence CsA pharmacokinetics [38,39]. Analysis of the fast/ed data [40] from different studies on two generic formulations of CsA shows that each version behaved like Sandimmune and not Neoral. This suggests that the absorption of CsA from these generic formulations are different to Neoral.

Together, these observations argue against the value of testing bioequivalence of different CsA formulations just in healthy volunteers. Therefore, the available evidence cannot be considered conclusive unless ‘Clinical’ bioequivalence is also tested in transplanted patients. In 2001 two independent panels of transplant and pharmacokinetic experts from Europe [41] and USA [42] convened to address issues associated with approval of generic immunosuppressant equivalents and to formulate consensus statements useful to better test bioequivalence for these drugs. Although both these conferences called to urge action, it should be mentioned that, after three years, none of the proposed guidelines have been applied, and none of the main concerns have been adequately addressed, despite a growing literature in the field of generics. Following is an update of the most recent developments on different CsA formulations published after the consensus guidelines.

An example of the limits of criteria now-a-day used to test generic formulations is given by SangCya (or Sang-35, SangStat Medical Corporation, Fremont, CA, USA), the most extensively studied generic alternative to Neoral. After a series of studies in healthy volunteers, FDA
the statistical analysis indicated both limits, thus meeting the bioequivalence criteria. However, macokinetic parameters fell within the required confidence dose of the study drug in a cross-over design. The Neoral in 24 healthy male volunteers who received a single dose of the study drug in a cross-over design [46]. Therefore, the available evidences are not enough supportive of bioequivalence between Gengraf and Neoral.

In recent report by Lee and colleagues [25], the generic product Neoplanta (Hannover Pharmaceutical, Ltd, Seoul, Korea), a new CsA microemulsion, was compared with Neoral in 24 healthy male volunteers who received a single dose of the study drug in a cross-over design. The pharmacokinetic parameters fell within the required confidence limits, thus meeting the bioequivalence criteria. However, the statistical analysis indicated both C_{max} and AUC were influenced by the sample assay sequence of the cross-over design [46]. Therefore, there is no evidence that the two formulations may be bioequivalent when administered in organ transplant recipients. Similarly, despite proven bioequivalence in healthy volunteers, no data on clinical bioequivalence have been provided for the new Sigmasporin Microoral (Gulf Pharmaceutical Industries, Julphar, United Arab Emirates) CsA formulation [29]. These concerns should be carefully addressed before Neoplanta and Microoral are introduced in clinical practice.

Conspuren (IVAX-CR, Opava, Czech Republic) is an additional generic CsA formulation developed more than 10 years ago in Czeck Republic [26]. Similarities in terms of graft outcome and survival between Conspuren and Neoral have been reported in kidney and heart transplant recipients [26,47,48]. However, these studies provide a strong example on how generic formulations are usually developed far from the concept of bioequivalence. Indeed Conspuren, used at 8 mg/kg dose was considered bioequivalent to Neoral, administered at 3 mg/kg [47]. More important, the C_{max} achieved with Neoral at 2 h postdosing was not reached at the same time point with Conspuren [49]. A similar trend has been observed in a cohort of 42 stable kidney transplant recipients converted from Neoral to the new dispersion formulation of CsA, Cicloral (Cicloral, Hexal AG, Holzkirchen, Germany), in a 1:1 dose relation [28,41]. Pharmacokinetic studies performed just before, when patients were on Neoral, and after the switch, when patients were on Cicloral, evidenced a different pattern of correlation between the single time-points ($C_{0}, C_{1.5}, C_{2}, C_{3}$) and the full AUC$_{0-12}$. The latter observations raise another important concern about the generic CsA formulations that unfortunately has not been addressed so far: the management of CsA monitoring. Limited blood sampling strategies (single- or multiple-point) failed with Sandimmune, but succeeded with Neoral, suggesting that these approaches are not directly applied to all generic formulations, but $ad hoc$ studies need to be planned to address this issue.

All together these examples illustrate the most important open questions related to generic CsA formulations. Nevertheless, one should also consider the additional confounding factor derived from poor- and superabsorbers in a given patient population that will magnify differences in CsA bioavailability between different formulations. These patient subsets must be also considered in bioequivalence testing. Moreover, since the patient pool is not homogeneous, for critical drugs like CsA, close monitoring is required when different formulations are switched each others. Equoral (IVAX-CR, Opava, Czech Republic), is a new formulation tested as bioequivalent to CsA Neoral in 12 healthy volunteers [30] and recently confirmed as clinically bioequivalent in 15 stable renal transplant patients switched from Neoral capsules to Equoral capsules [31]. It should be pointed out, however, that bioequivalence studies should be conducted with a large number of subjects, usually 20–40 [42]. Assuming that no more than 20% of patients treated with Neoral present an atypical CsA absorption profile [12,17], only two to three subjects in each study may have an altered absorption. Since no data have been provided on the variability of CsA levels at each sampling time-point, the results could have been biased, underscoring the impact of poor and/or superabsorbers.
The availability of multiple CsA formulations will also raise concerns about their impact on clinical outcomes. At least two issues should be considered: the use of generics starting immediately after surgery (prescribability), and the switch from the innovator’s to the generic product in stable transplant recipients (switchability). The former may have less clinical impact, since the dose of a given formulation could be optimized by monitoring CsA levels starting immediately postsurgery. If differences exist among CsA formulations, they are likely to play a significant role in patients on maintenance therapy. Since proper monitoring of CsA exposure is crucial to optimum immunosuppression, switching between different CsA formulation in patients late after transplant when visit are less frequent, may not provide the same optimal monitoring, with increased risk of graft loss or toxicity. Although a uniform opinion regarding safety of switching among CsA formulations was not reached, clinical recommendations have been proposed in the previous consensus guidelines [41,42]. A switch to a generic CsA formulation should be conducted only under the supervision of the transplant physician, avoiding to mix different CsA formulations, and monitoring CsA blood levels closely during the first week after a change in the formulation, together with frequent monitoring of serum creatinine levels and blood pressure.

One should point out that bioequivalence does not necessarily mean clinical equivalence. Inadvertent switching between CsA formulations could impact long-term clinical outcomes and graft survival. A recent report following an analysis of the Collaborative Transplant Study database (Opelz G, available at http://www.ctstransplant.org) shows a significantly lower graft survival in renal transplant recipients given a generic CsA formulation as compared with those on Neoral. At one year postsurgery, the overall graft survival for Neoral-treated patients was 88% vs. 78% for generic CsA treated patients. This is only a retrospective analysis that may be biased by several confounding factors, however, it deserves attention. Different studies have shown that the variability of CsA exposure significantly affects short- and long-term graft survival [3,4,50–54], a concept verified using both the traditional CsA C0-based [4,51,53] and the new C2-based [50,52,54] sampling strategy to monitor CsA levels. Therefore, differences in CsA pharmacokinetic parameters, as it might happen between Neoral and generic CsA formulations, may significantly affect the clinical outcome.

Conclusions

In general, we are fully supportive of the use of generic drugs in clinical practice. Certainly, this strategy will help to increase access to essential medicine, particularly in emerging countries, that have limited resources to afford the cost of innovator products [55]. However, not all generic drugs may need similar requirements for testing bioequivalence versus innovators before entering in the clinical practice. Indeed, the actual bioequivalence guidelines should be applied only for drugs characterized by a wide, well-known therapeutic index, such as antihypertensive, lipid-lowering, non-steroidal anti-inflammatory agents. Usually these drugs are administered at a fixed dose, because difference between the optimal and toxic dose is extremely high. Thus, in such instance, small variation in the pharmacokinetic profile, as it might happen using generics, does not affect the pharmacological and toxicological properties and eventually clinical outcome. Unfortunately, the above mentioned rules apply indiscriminately to all drugs independently of whether they belong or not to narrow therapeutic range and critical dose agents. However, for drugs with narrow therapeutic index, such as CsA, small variation in the pharmacokinetic property of generic formulation may result in a great impact on clinical outcome. This implies that more restrictive criteria are required to test generic formulation of narrow therapeutic index drugs. Three years ago a panel of experts proposed to perform additional studies in which the innovator and the test product should be given in replicate administration in four period crossover [42]. This approach may allow the calculation of both the inter- and intra-patient variability of the two CsA formulations tested. Unfortunately, to our knowledge, this strategy has never been pursued.

Thus, before generic forms of CsA enter into clinical practice, they should be evaluated not only in single-dose healthy volunteers, as mostly it now occurs, but also in chronically treated, heterogeneous populations of transplant recipients to confirm clinical bioequivalence.

Actually, there is a significant lack of articles published in peer-reviewed journals for generic formulations of CsA (Table 1). Transplant clinicians and their patients expect

Table 1. Number of publications in peer-reviewed journals on results from studies of Sandimmune, Neoral and other CsA generic formulations.

<table>
<thead>
<tr>
<th>CsA</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandimmune</td>
<td>1218</td>
</tr>
<tr>
<td>Neora</td>
<td>1672</td>
</tr>
<tr>
<td>SangCy</td>
<td>13</td>
</tr>
<tr>
<td>Consupre</td>
<td>25</td>
</tr>
<tr>
<td>Neoplant</td>
<td>3</td>
</tr>
<tr>
<td>Gengra</td>
<td>3</td>
</tr>
<tr>
<td>Cicloral</td>
<td>3</td>
</tr>
<tr>
<td>Eo</td>
<td>1</td>
</tr>
<tr>
<td>Equirra</td>
<td>2</td>
</tr>
<tr>
<td>Microora</td>
<td>1</td>
</tr>
</tbody>
</table>
information to be available on the efficacy and safety of
generic CsA formulations and this should be a priority
for future studies.

Experience gained from studies with Sandimmune and
Neoral indicates that higher bioavailability of CsA for-
malation and reduced variability of drug exposure decrease
the risk of acute rejection episodes, increase long-term
graft survival, and lower treatment costs [4]. Therefore,
in the absence of adequate testing prior to federal agency
approval, converting patients from the current Neoral to
the new generic formulations could be detrimental. Lack
of these informations may expose patients to the
increased and unacceptable risk of graft function deterio-
ration and graft loss as compared to the traditional Neoral
formulation. As a consequence, the apparently lower cost
of the generic formulations would be outweighed by the
additional costs of further, unscheduled interventions
required to monitor patients when graft function rapidly
deteriorates. More research is now required to address the
still unanswered problems dealing with the generic CsA
formulations. Only when these additional information
will be available, the time will arrive for the safe place of
these drugs as part of the current immunosuppressive
regimens in organ transplantation.

Acknowledgements

Dr. Dario Cattaneo is a recipients of ‘Fondazione Monzi-
no’ fellowship. The Authors thank the Association for
Research on Transplantation (ART) for the continuous
support.

Conflict of interest

The authors declare no conflict of interest. None of the
authors have received grants, honoraria or travel support
from Novartis. The ‘Mario Negri’ Institute has received a
grant from Novartis Italia to partially support an inde-
pendent, academic study on cardiovascular disease pre-
vention in patients with chronic nephropathies.

References

1. Hariharan S, Johnson P, Bresnan BA, Taranto SE, McIn-
tosh MJ, Stablein D. Improved graft survival after renal
2. Lindholm A, Kahan BE. Influence of cyclosporine pharma-
cokinetic, trough concentrations, and AUC monitoring on
outcome after kidney transplantation. Clin Pharmacol Ther
1993; 54: 205.
G. Low intrapatient variability of blood cyclosporine levels
is correlated with excellent graft survival. Transplant Proc
1997; 29: 288.
dual variability of cyclosporin A exposure reduces chronic
rejection incidence and health care costs. J Am Soc Nephrol
2000; 11: 1122.
5. Tyrer JH, Eadie MJ, Sutherland JM, Hooper WD. Out-
break of anticonvulsivant intoxication in an australian city.
7. Mountfield RJ, Senepin S, Schleimer M, Walter I, Bittner
B. Potential inhibitory effects of formulation ingredients
8. Canadian Multicentre Transplant Study Group. A random-
ized clinical trial of cyclosporine in cadaveric renal trans-
The pharmacokinetics of Sandimmun Neoral: a new oral
formulation of cyclosporine. Transplant Proc 1994; 26:
2935.
10. Mueller EA, Kovarik JM, van Bree JB, Grevel J, Lucker
PW, Kutz K. Influence of a fat reach meal on the pharma-
cokinetics of a new oral formulation of cyclosporine in a
crossover comparison with the market formulation. Pharm
11. Curtis JJ, Barbeito R, Pirsch J, Lewis RM, Van Buren DH,
Choudhury S. Differences in bioavailability between oral
cyclosporine formulations in maintenance renal transplant
prospective multicenter pharmacoepidemiologic study of
cyclosporine microemulsion in stable renal graft recipients.
in renal transplantation by a pharmacokinetic strategy.
absorption of cyclosporine from a microemulsion formula-
lation in liver transplant patients. Transplantation 1995; 60:
515.
15. Mendez R, Abboud H, Burdick J, et al. Reduced intrapa-
tient variability of cyclosporine pharmacokinetics in renal
transplant recipients switched from oral Sandimmune to
16. Keown P, Niese D, on behalf of the International Sandim-
mune Neoral Study Group. Cyclosporine microemulsion
increases drug exposure and reduces acute rejection with-
out incremental toxicity in de novo renal transplantation.
traditional cyclosporine to the microemulsion formulation
12: 379.
18. David OJ, Johnston A. Limited sampling strategies for esti-
minating cyclosporin area under the concentration–time

Generic cyclosporine formulations

49. Zafar MN, Abbas K, Naqvi A, Rizvi A. Pharmacokinetics of abbreviated AUC of cyclosporine in renal allograft
